N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing

نویسندگان

  • Marek Bartosovic
  • Helena Covelo Molares
  • Pavlina Gregorova
  • Dominika Hrossova
  • Grzegorz Kudla
  • Stepanka Vanacova
چکیده

N6-methyladenosine (m6A) is the most abundant base modification found in messenger RNAs (mRNAs). The discovery of FTO as the first m6A mRNA demethylase established the concept of reversible RNA modification. Here, we present a comprehensive transcriptome-wide analysis of RNA demethylation and uncover FTO as a potent regulator of nuclear mRNA processing events such as alternative splicing and 3΄ end mRNA processing. We show that FTO binds preferentially to pre-mRNAs in intronic regions, in the proximity of alternatively spliced (AS) exons and poly(A) sites. FTO knockout (KO) results in substantial changes in pre-mRNA splicing with prevalence of exon skipping events. The alternative splicing effects of FTO KO anti-correlate with METTL3 knockdown suggesting the involvement of m6A. Besides, deletion of intronic region that contains m6A-linked DRACH motifs partially rescues the FTO KO phenotype in a reporter system. All together, we demonstrate that the splicing effects of FTO are dependent on the catalytic activity in vivo and are mediated by m6A. Our results reveal for the first time the dynamic connection between FTO RNA binding and demethylation activity that influences several mRNA processing events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic m6A modification regulates local translation of mRNA in axons

N6-methyladenosine (m6A) is a reversible modification in mRNA and has been shown to regulate processing, translation and decay of mRNA. However, the roles of m6A modification in neuronal development are still not known. Here, we found that the m6A eraser FTO is enriched in axons and can be locally translated. Axon-specific inhibition of FTO by rhein, or compartmentalized siRNA knockdown of Fto ...

متن کامل

Implications of widespread covalent modification of mRNA.

W hole transcriptome analysis reveals that one third of human and mouse genes express mRNAs containing methylated adenosines. Fat mass and obesity-associated (FTO) gene, a risk gene for obesity and metabolic abnormalities , demethylates the modified residues, suggesting a link between RNA methylation and disease. Vertebrate ribosomal RNA (rRNA), transfer RNA (tRNA), messenger RNAs (mRNAs) as we...

متن کامل

The Demethylase Activity of FTO (Fat Mass and Obesity Associated Protein) Is Required for Preadipocyte Differentiation

FTO (fat mass and obesity associated gene) was genetically identified to be associated with body mass index (BMI), presumably through functional regulation of energy homeostasis. However, the cellular and molecular mechanisms by which FTO functions remain largely unknown. Using 3T3-L1 preadipocyte as a model to study the role of FTO in adipogenesis, we demonstrated that FTO is functionally requ...

متن کامل

N6-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5

N(6)-Methyladenosine (m6A) is currently one of the most intensively studied post-transcriptional modifications in RNA. Due to its critical role in epigenetics and physiological links to several human diseases, it is also of tremendous biological and medical interest. The m6A mark is dynamically reversed by human demethylases FTO and ALKBH5, however the mechanism by which these enzymes selective...

متن کامل

m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells

RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransfera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017